### **Bioenergetics**

#### PhD. student Dr. A. Y. Al-Dubakel.

### 4- Energy Balance in Fish 3

# **Crustacean Energy Problems**

- Lipids and carbohydrates are typical energy sources for crustaceans
- unfortunately, crustaceans are unable to tolerate diets having greater than 10% lipid (also hard to manufacture the feed!)
- this means that the major energy source must be derived from COH
- various COH are used to various degrees by crustaceans, making it difficult to calculate the true energy value of diets

#### Why **bioenergetics** is useful to fish ecology? •

- 1- It is a mathematical representation of how a fish grows
- 2- Allows researchers, students and managers a way to understand .....

Typical Energy Budgets Differ for Carnivores & Herbivores:

| Normalized Percentages | Consumption | Respiration | Waste | Growth |
|------------------------|-------------|-------------|-------|--------|
| Carnivore              | 100 =       | 44 +        | 27 +  | 29     |
| Herbivores             | 100 =       | 37 +        | 43 +  | 20     |

Bioenergetics ~ Economics

#### <u>Consumption = Metabolism + Waste + Growth</u>

### Consumption = Income

### Metabolism = Rent

Rent you have to pay, no matter if you eat or not, no matter if you're making money or not

### Wastes & Losses = Taxes

Taxes you have to pay, only if you eat, and its scaled to how much you eat

# Growth = Savings and Investments

Growth record Is like checking account, I can be zero and even negative sometimes



Why would growth be different?

 $\rightarrow$  More food?

→ Better quality food?

→ Don't work as hard for food?

 $\rightarrow$  Lakes are different temperatures?

 $\rightarrow$  Stress, contaminants, food webs





Consumption Respiration → Basal Metabolism Specific Dynamic Action → Costs from digestion → Costs from digestion

 $C = (R + A + S) + (F + U) (\Delta B + G)$ 

# $C = (R + A + S) + (F + U) + (\Delta B + G)$

| Independent     | Losses                         | Losses        | <u>Gains</u>                            |  |
|-----------------|--------------------------------|---------------|-----------------------------------------|--|
| C = consumption | R = respiration                | F= egestion   | ΔB = Change in<br>biomass<br>G = gonads |  |
|                 | A = active<br>metabolism       | U = excretion |                                         |  |
|                 | S = specific<br>dvnamic action |               | /reproduction                           |  |

#### All processes are temp. and size dependent



#### All processes are temp. and size dependent



#### Maximum consumption isn't realistic p-value = proportion of maximum consumption



#### Maximum consumption isn't realistic p-value = proportion of maximum consumption

